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1 The Hopf-Lax Solution to Hamilton-Jacobi Equations

1.1 The Hamiltonian in classical mechanics

Last time, we were solving the Hamilton-Jacobi equation{
ut +H(x,Du) = 0

u(0) = u0

using the calculus of variations:

u(x, t) = inf
y(t)=x

∫ t

0
L(y(s), ẏ(s)) ds+ u0(y(0)).

Theorem 1.1. The function u solves the Hamilton-Jacobi equation for as long as the
solutions stay smooth.

In the proof, we had the convex duality

H(x, p) = max
q
p · q − L(x, q)

for the Hamiltonian H(x, p) and the Lagrangian L(x, q).

Example 1.1. Here is an example from classical mechanics. Consider the Lagrangian

L(x, q) =
1

2
mq2 − φ(x),

where 1
2mq

2 is kinetic energy and φ(x) is potential energy. Then

H(x, p) = sup
q
p · q − 1

2
mq2 + φ(x)
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Complete the square to get

= sup
q

1

2m
p2 − 1

2m
(p−mq)2 + φ(x)

=
1

2m
p2 + φ(x)

In the physical interpretation, the Hamiltonian H(x, p) plays the role of the energy of the
system.

1.2 The Hopf-Lax formula

Now we will consider a special case, where L = L(q) does not depend on x (and conse-

quently H = H(p)). Assume that L,H are strictly convex and coercive (i.e. limq→∞
L(q)
|q| =

∞). The Euler-Lagrange equation tells us that

����Lx(y, ẏ) +
d

dt
Lq(y, ẏ) = 0.

So we get that Lq(ẏ) is constant. Since Lq is a local diffeomorphism, we get that ẏ is
constant. That is, the solutions to the Euler-Lagrange equation are linear.

We claim that fixing the endpoints y(0), y(t), the minimum is attained for linear tra-
jectories.

Theorem 1.2 (Hopf-Lax formula1). If L = L(q) is convex, then

u(x, t) = inf
y
u0(y) + tL

(
x− y
t

)
.

Proof. Since ∫ t

0
ẏ(s) ds = y(t)− y(0),

we can average to get
1

t

∫ t

0
ẏ(s) ds =

y(t)− y(0)

t
,

where the right hand side is the average velocity for a straight path.

1This is from the 50s or the 60s. Professor Tataru was actually able to meet Lax a few times.
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Then ∫ t

0
L(ẏ(s)) ds = t · 1

t

∫ t

0
L(ẏ(s)) ds

Convexity says that L(x+y
2 ) ≤ 1

2(L(x) + L(y)). More generally, we get that L(hx + (1 −
h)y) ≤ hL(x) + (1 − h)L(y). If we use n variables, this is L(x1+···+xn

n ) ≤ 1
n(L(x1) + · · · +

L(xn)). If we increase the number of variables, this says that L(avg(z)) ≤ avg(L(z(s))),
where we are taking average integrals. This is called Jensen’s inequality, and it gives us

≥ t · L
(
y(t)− y(0)

t

)
In other words, the cost of an arbitrary path is ≥ the cost of the straight path.

We are not done yet. We still need to minimize u0(y(0)) over the choice of y(0).

1.3 Properties of the Hopf-Lax solution

Assume L is convex and coercive. For simplicity, also assume that u0 is bounded. Observe
that if t > 0, then we can restrict q = x−y

t to a compact set. So if u0 is also continuous,
then the infimum is attained.

Proposition 1.1. If u0 ∈ Lip, then u ∈ Lip.

Proof. Here is a proof by picture. Suppose we have points x1, x2, and we want to compare
u(x1) and u(x2). It is enough to consider parallel trajectories with y1, y2.

Take x1 − y1 = x2 − y2. Then y1 − y2 = x1 − x2. We have

u(x1, t) = inf
y1
u0(y1) + tL

(
x1 − y1

t

)
,

u(x2, t) = inf
y2
u0(y2) + tL

(
x2 − y2

t

)
.
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Using the Lipschitz condition, |u0(y1)−u0(y2)| ≤ L|y1−y2| = L|x1−x2|. So the conclusion
is that

|u(x1, t)− u(x2, t)| ≤ L|x1 − x2|.

What if we don’t assume u is Lipschitz? Can we still conclude that u is Lipschitz?

Proposition 1.2. If u0 is continuous, then u(t) is Lipschitz.

Proof. In this case, compare x1 and x2 to the same y:

We have

u(x1) = inf
y
u0(y) + L

(
x1 − y
t

)
,

u(x2) = inf
y
u0(y) + L

(
x2 − y
t

)
.

The difference ∣∣∣∣L(x1 − yt

)
− L

(
x2 − y
t

)∣∣∣∣ ≤ C · |x1 − x2|t
,

where the Lipschitz constant C = C(t) in the set where x1−y
t and x2−y

t live.
Where should we look? y−x1

t , y−x2

t cannot be too large. Let x = x1 = x2, and compare
the straight trajectory to an arbitrary trajectory.
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The oblique trajectory loses if u0(x)+tL(0) ≤ u0(y)+tL
(x−y

t

)
. This is when 2M

t ≤ L(x−yt ).

So we can restrict to y such that L(x−yt ) ≤ 2M
t . So x−y

t is in a compact set depending on
t. Then the conclusion is that

|u(x1, t)− u(x2, t)| ≤ C(t) · |x1 − x2|
t

,

where C(t) is the Lipschitz constant for L in the region L(q) ≤ C
t . This Lipschitz constant

goes to ∞ as t→ 0.

In terms of the Hamilton-Jacobi equation, there will be lots of velocities with different
speeds. So there is only an average velocity that survives.

We say that this PDE has a mild regularizing effect.

1.4 Almost everywhere solvability of the Hamilton-Jacobi equation

Recall the following theorem from real analysis (which requires measure theory).

Theorem 1.3. If u is a Lipschitz function, then u is differentiable almost everywhere.

So we get the following conclusion.

Corollary 1.1. The solution u is differentiable almost everywhere.

Proposition 1.3. Let (x, t) be a differentiability point for u. Then the Hamilton-Jacobi
equation holds at (x, t).

Corollary 1.2. The function u solves the Hamilton-Jacobi equation almost everywhere.

Let’s prove the proposition.

Proof. We can think of the Hamilton-Jacobi equation as proving two separate inequalities.
If our trajectory is optimal, then it is optimal if we only look at the trajectory at a shorter
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length of time. Look at the optimal trajectory, ending at y and with slope x−y
t .

Then

u(x, t) = u0(y) + tL

(
x− y
t

)
,

so

u

(
x− hx− y

t
, t− h

)
= u0(y) + (t− h)L

(
x− y
t

)
The first equation tells us that y is the optimal trajectory for (x, t), and the second says
that y is optimal for (x · hx−y

t , t− h).
Let q = x−y

t . Then dividing by h gives

u(x, t)− u(x− hq, t− h)

h
= hL(q).

Letting h→ 0 gives
∂xu · q + ∂tu = L(q).

So for this special q we have chosen,

∂tu+ ∂xu · q − L(q) = 0.

We want to think of this in terms of the Legendre transform. Since H(p) = sup p · q−L(q),
the latter half of our equation, ∂xu · q − L(q), is ≤ H(∂xu). So we get

∂tu+H(∂xu) ≥ 0.

Now we want to produce the other inequality. Notice that for the previous inequality,
it was enough to work with a specific value of q, whereas for this direction, we will need to
look at all values of q. Instead of looking at the past of (t, x), look at the future of (t, x).
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Our picture looks like

One trajectory from (t+h, x+hz) is to go through x, but this may not be optimal. So

u(t+ h, x+ hz) ≤ u(t, x) + hL(z)︸ ︷︷ ︸
=
∫ t+h
t L(z) ds

As before, subtract the right hand side, divide by h, and let h→ 0. Then we get

u(t+ h, x+ hz)− u(t, x)

h
≤ L(t) =⇒ ∂u+ ∂xuz ≤ L(z).

So we have proven that for all z,

∂tu+ ∂xu · z ≤ 0.

Taking the supremum over all z, we get

∂tu+H(∂xu) ≤ 0.

Now we will tell a story. The details are in Evans’ book, but the overall story is more
important. We want to ask a question: Does solving the Hamilton-Jacobi equation almost
everywhere suffice to guarantee uniqueness for Hamilton-Jacobi? Equivalently, does this
guarantee that u is the minimal value function? The answer is no.

Are there other interesting properties for the function u? Look at the Hopf-Lax formula

u(x, t) = inf u0(y) + tL

(
x− y
t

)
.

Observe that this is an infimum of functions which are smooth in x. We can compare what
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this looks like for different optimal/nonoptimal y:

Since we are taking a minimum, we can see that our curve could have a corner pointing
upwards, but a corner pointing downwards is not possible. This points to a concavity
property of our solution.

Proposition 1.4. u is semiconcave.

Concave means that u(t, x) ≥ u(t,x+y)+u(t,x−y)
2 . Semiconcave means that

u(t, x) ≥ u(t, x+ y) + u(t, x− y)

2
− c · |x− y|2.

Theorem 1.4. The optimal value function u is the unique semiconcave solution to the
Hamilton-Jacobi equation.

The proof is in Evans, but it is a little hard to follow. There is a better way to do
things! Instead of plugging in u to check whether it satisfies the equation, if we have a
corner, draw a tangent test function ϕ with ϕt +H(∂xφ) ≥ 0 or ϕt +H(∂xφ) ≤ 0.

These are called viscosity solutions for Hamilton-Jacobi equations.
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