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1 The Hopf-Lax Solution to Hamilton-Jacobi Equations

1.1 The Hamiltonian in classical mechanics

Last time, we were solving the Hamilton-Jacobi equation

ut—l—H(x,Du) =0
u(0) = ug

using the calculus of variations:

) = int [ Llas) i) ds + wa(o(0))

Theorem 1.1. The function u solves the Hamilton-Jacobi equation for as long as the
solutions stay smooth.

In the proof, we had the convex duality
H(z,p) = maxp-q — L(z,q)

for the Hamiltonian H(x,p) and the Lagrangian L(z,q).

Example 1.1. Here is an example from classical mechanics. Consider the Lagrangian

L(w,q) = yma” — 9(a),

where %qu is kinetic energy and ¢(z) is potential energy. Then

1
H(z,p) =supp-q— qu2 + ¢(z)
q



Complete the square to get

_ 1 2 1 2

=supg b 2m(p mq)” + ¢(x)
1 2

= %P + o(x)

In the physical interpretation, the Hamiltonian H (z,p) plays the role of the energy of the
system.

1.2 The Hopf-Lax formula

Now we will consider a special case, where L = L(q) does not depend on x (and conse-
quently H = H(p)). Assume that L, H are strictly convex and coercive (i.e. limg_,o % =
00). The Euler-Lagrange equation tells us that

d .
Loty g + 5 La(y, ) = 0.

So we get that Ly(y) is constant. Since L, is a local diffeomorphism, we get that ¢ is
constant. That is, the solutions to the Euler-Lagrange equation are linear.

We claim that fixing the endpoints y(0), y(¢), the minimum is attained for linear tra-
jectories.

Theorem 1.2 (Hopf-Lax formulal). If L = L(q) is convex, then

u(e,t) = infuo(y) + tL (w - y) :

Proof. Since
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where the right hand side is the average velocity for a straight path.

we can average to get

[

'This is from the 50s or the 60s. Professor Tataru was actually able to meet Lax a few times.
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Convexity says that L(%3%) < 1(L(z) + L(y)). More generally, we get that L(hx + (1 —
h)y) < hL(z) 4+ (1 — h)L(y). If we use n variables, this is L(ZFte) < L(L(zq) + .- 4
L(zy,)). If we increase the number of variables, this says that L(avg(z)) < avg(L(z(s))),
where we are taking average integrals. This is called Jensen’s inequality, and it gives us
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In other words, the cost of an arbitrary path is > the cost of the straight path. O

We are not done yet. We still need to minimize uo(y(0)) over the choice of y(0).

1.3 Properties of the Hopf-Lax solution

Assume L is convex and coercive. For simplicity, also assume that ug is bounded. Observe
that if ¢ > 0, then we can restrict ¢ = % to a compact set. So if ug is also continuous,
then the infimum is attained.

Proposition 1.1. If ug € Lip, then u € Lip.

Proof. Here is a proof by picture. Suppose we have points x1, x2, and we want to compare
u(zq) and u(z2). It is enough to consider parallel trajectories with y1, ya.

Take x1 — y1 = 2 — y2. Then y; — yo = 1 — x2. We have

w(zy,t) = infug(yy) + tL (g) ,
Y1

u(xz,t) = infuo(yg) —I—tL (1‘2 ; y2> .
Y2

3



Using the Lipschitz condition, |ug(y1) —uo(y2)| < Lly1 —y2| = L|z1 —z2|. So the conclusion
is that
|u(z1,t) — u(ze, t)| < Llxy — 24]. O

What if we don’t assume wu is Lipschitz? Can we still conclude that w is Lipschitz?
Proposition 1.2. If uy is continuous, then u(t) is Lipschitz.

Proof. In this case, compare x; and x5 to the same y:

=

u(e1) = inf ug(y) + L ("'”t—‘y) ,

We have

u(ws) = infuo(y) + L (” - y) .
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where the Lipschitz constant C' = C(t) in the set where *.-¥ and 2 live.

Where should we look? ¥=F1 Y=%2 cannot be too large. Let # = 1 = x3, and compare
the straight trajectory to an arbitrary trajectory.

The difference




The oblique trajectory loses if ug(2)+tL(0) < ug(y)+tL (*7¥). Thisis when 2 < L(Z7¥),
So we can restrict to y such that L(27%) < 2. So 2=¥ is in a compact set depending on
t. Then the conclusion is that

Ty — T2
|u(z1,t) — u(xe, t)| < C(2) - |t—|’
where C(t) is the Lipschitz constant for L in the region L(q) < % This Lipschitz constant
goes to co as t — 0. O

In terms of the Hamilton-Jacobi equation, there will be lots of velocities with different
speeds. So there is only an average velocity that survives.

We say that this PDE has a mild regularizing effect.

1.4 Almost everywhere solvability of the Hamilton-Jacobi equation

Recall the following theorem from real analysis (which requires measure theory).

Theorem 1.3. If u is a Lipschitz function, then u is differentiable almost everywhere.
So we get the following conclusion.

Corollary 1.1. The solution u is differentiable almost everywhere.

Proposition 1.3. Let (z,t) be a differentiability point for w. Then the Hamilton-Jacobi
equation holds at (z,t).

Corollary 1.2. The function u solves the Hamilton-Jacobi equation almost everywhere.
Let’s prove the proposition.

Proof. We can think of the Hamilton-Jacobi equation as proving two separate inequalities.
If our trajectory is optimal, then it is optimal if we only look at the trajectory at a shorter



length of time. Look at the optimal trajectory, ending at y and with slope %

Then

) =uno) +12 (270,

SO

“(I—hw%,t—h) =uo(y) + (t — h)L (:”;y)

The first equation tells us that y is the optimal trajectory for (x,t), and the second says
that y is optimal for (z - h*™¥,t — h).
Let ¢ = *5¥. Then dividing by h gives

u(x,t) —u(x — hq,t — h)
h

= hL(q).

Letting h — 0 gives
Ozt - q+ Opu = L(q).
So for this special ¢ we have chosen,

O+ Ogu - q — L(q) = 0.

We want to think of this in terms of the Legendre transform. Since H(p) = supp-q— L(q),
the latter half of our equation, d,u - ¢ — L(q), is < H(0yu). So we get

Byu+ H(9yu) > 0.

Now we want to produce the other inequality. Notice that for the previous inequality,
it was enough to work with a specific value of ¢, whereas for this direction, we will need to
look at all values of ¢. Instead of looking at the past of (¢, ), look at the future of (¢, ).



Our picture looks like

One trajectory from (¢ + h,x + hz) is to go through z, but this may not be optimal. So

u(t+ h,x 4+ hz) <wu(t,z)+ hL(2)
——
:fttJrh L(z)ds

As before, subtract the right hand side, divide by h, and let A — 0. Then we get

u(t + h,x + hz) — u(t, x)
h

< L(t) = Ou+ Oyuz < L(z).
So we have proven that for all z,
O+ Ozu -2 <0.
Taking the supremum over all z, we get
Owu + H(0yu) <0. O

Now we will tell a story. The details are in Evans’ book, but the overall story is more
important. We want to ask a question: Does solving the Hamilton-Jacobi equation almost
everywhere suffice to guarantee uniqueness for Hamilton-Jacobi? Equivalently, does this
guarantee that v is the minimal value function? The answer is no.

Are there other interesting properties for the function u? Look at the Hopf-Lax formula

u(z,t) = inf ug(y) + tL (%) .

Observe that this is an infimum of functions which are smooth in . We can compare what



this looks like for different optimal /nonoptimal y:

Since we are taking a minimum, we can see that our curve could have a corner pointing
upwards, but a corner pointing downwards is not possible. This points to a concavity
property of our solution.

Proposition 1.4. u is semiconcave.

Concave means that u(t,z) > u(t’Hy);u(t’x*y). Semiconcave means that

u(t,r +y) +u(t,r —y)
2

ult,z) > —c-lz -yl
Theorem 1.4. The optimal value function u is the unique semiconcave solution to the
Hamilton-Jacobi equation.

The proof is in Evans, but it is a little hard to follow. There is a better way to do
things! Instead of plugging in u to check whether it satisfies the equation, if we have a
corner, draw a tangent test function ¢ with ¢, + H(0,¢) > 0 or ¢ + H(9z¢) < 0.

These are called viscosity solutions for Hamilton-Jacobi equations.
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